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CLJ-R, Aberdeen Proving Ground, Maryland 21010. However, the Defense Tech-
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ON THE TEMPERATURE DEPENDANCE OF THE FORMATION CONSTANT
OF THIOCYANATOPENTAAQUOCHROMIUM (III)

IN ACIDIC SOLUTION

1i. INTRODUCTION

The ionization constants for the reversible dissociation of carbonxylic acids
pass through a minimum as temperature varies.' If the ionization is regarded as a
one-step or unitary process, then the heat capacity at constant pressure, ACO, must
be negative. Numerous investigators have tried to find expressions to fit the ex-
perimentally observed temperature dependence in order to compute ACO which is re-
garded as a measure of solute-solvent interactions. 2 Timimi reviewed Vhese empirical
expressions. 3

More recently, Blandamer 4 and coworkers in the United Kingdom and
Canada have reexamined the interpretation of negative heat capacities for the ion-
ization of carboxylic acids, using Albery and Robinson's idea 5 that such nonzero

- heat capacities are artificats caused by the presence of intermediates. Starting with
*. a suggestion by Eigen 6 that diffusion-controlled intermediates are formed in the ion-

ization of carboxylic acids, Blandamer and coworkers postualted 7 , 
8 that the dissocia-

tion of carboxylic acids could be written as

RCOOH + 2H 20 K'"[RCOOH-- H 20 • H 20]) -K l

[RCOO H 20 H 30 RCOO + H20 + HO 1)

where the intermediates are hydrogen-bonded, diffusion-controlled, "enounter"
complexes with K 1 and K 3 values near unity. Since K 2 <<1 for carboxylic acids,
the observed dissociation constant, K o, is

Ko = K 1K 2K 3 /(l+K 1) (2)

*i. Blandamer showed that the observed temperature dependence for K o arose from equa-
tion (2) using temperature-independent enthalpies for the individual equilibria K 1,
K 2 , and K 3 .

Over the past tihree years, Blandamer 9-17 has also shown that the solvol-
lysis of many organic compounds with nonzero heat capacities of activation which
had been treated as unitary reactions"1 may also be multistep reactions with rapid
preequilibria. Blandamer and colleagues have labeled such temperature-dependent

* activation energies, arising from the presence of preequilibria, as "spurious" or
* "anomalous." Blandamer noted that spurious heat capacities are themselves temper-

-- ature-dependent, 5, 19 and an expression that he derived to compute enthalpies and
heat capacities of activation also gave temperature-dependent ACO, if pree(quilibria
were present. 1 Albery and Robinson 5 chided earlier investigators for fitting rate
or equilibrium constants to expressions with temperature-independent heat capacities.

* In contrast to the wealth of information on organic compounds with tempera-
- ture-dependent activation energies, there are far fewer examples in the inorganic
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chemistry literature, particularly for formation constants of strong complexes which
one can liken to the formation of carboxylic acids (reverse of equation 2) .20 A
notable exception is the formation of thiocyanotopentaaquochromium (III), given be-
low:

Cr(H20) 6
3 + + NCS K Cr(H20)5 NCS2+ + H 20 (3)

Postmus and King 2 1 , 2 2 found the equilibrium constant for equation 3 passed through
a minimum in accordance with the behavior of the observed association constant for
carboxylic acids. Postmus and King computed a value of AC3 for equation 3, but
they used an expression with a temperature-independent heat capacity.

In view of Blandamer's recent interpretation of carboxylic acid ionization,
one wonders whether the ACO that Postmus and King measured is also "spurious."
To this end, Blandamer's expression has been applied to Postmus and King's equili-
brium constants to test the temperature-dependence of ACO for equation 3.

2. BLANDAMER'S METHOD FOR COMPUTING ACTIVATION PARAMETERS

Blandamer's expression for calculation of thermodynamic parameters from
*the temperature dependence of equilibrium data is

( AHO (1 1 +ifi Fln (T' +0--- + In + T- + 1
K =Koe R o To R L T (4)

where K = equilibrium constant at temperature, T
K o= equilibrium constant at temperature, T o

AH = enthalpy at T0, and
A CO = heat capacity at T o.

The equation is obtained by the integration of the van't Hoff isochore between the
temperature To and T assuming ACO is independent of temperature. If ACO is
dependent on temperature, equation 4 gives a poor fit and the AC3 values as com-
puted do predict the correct trend of the actual AC3 dependence with temperature,
though thermodynamically incorrect. For rate data, K and K o in equation 4 become
k and (ko-T)/To, respectively, and AH ° and ACO become activation parameters.
For a series of measurements at n pairs of K anTT, any pair of K and T is set as
Ko and To, and all other values of K,T are fit to equation 4 to give AHO and AC3
at Temperature To. The calculation is repeated with a different K,T set as K ,T0 o
until all values of T have been used as To. This results in n values of AHO and
AC3 from which one determines whether AC5 is zero, constant, or temperature de-
pendent.

A nonlinear least-squares program2 3 is used to find the best-fit values of
AHO and LC from a set of K,T data. The temperature, T, is the independent

S variable, K is the dependent variable, AHO and ACA are parameters to be fit, and
Ko and To are fixed parameters. The program finds best-fit values of AH ° and
AC3 and then computes the equilibrium constants with these best-fit values of AHO
and AC to compare the fit between sets of data.

L

-.



3. RESULTS AND DISCUSSION

Table A-1* lists the equilibrium constants Postmus and King measured !,,

the formation constant of Cr(H 2 0) 5NCS2 +, which were corrected to zero ionic
strength with a modified Debye-Huckel equation. Three formation constants at
14.01C, 25.1 0 C and 30.0 0 C are the ratio of the forward and reverse rate constants.
At 301C, the formation constant was measured both spectrophotometrically and as
a ratio of rate constants.

In table A-2, which illustrates typical results of the temperature fit with
Blandamer's expression using 94.61C as an example, one can see that the formation
constants calculated with the best-fit values of AHO and AC3 agree well with the
experimental values. The results of the calculations at each of the )er tempera-
tures are listed in appendix B. Table A-3 summarizes the values c H0 and : Cb
from all the calculations, which seem to show that AC0 is constant. ') test this
premise further, the enthalpies in table A-3 were fit linearly with t. oerature with
the least-squares program. The results of this calculation are shot n table A-4.
Again, agreement between experimental and computed enthalpies an, small stan-
dard deviations of the mean suggest that the fit is adequate and th, A can be
considered constant at 66 cal/mole-K.

These results suggest, then, that the AC' for the formation constant of
Cr(H 20)sNCS 2+ is not spurious, and that temperature-dependent enthalpies should
be much more common for inorganic reactions, one need only extend the temperature
range to find the temperature dependence. As table A-5 shows, many inorganic
equilibria 2 4 - 2 7 have been measured over narrow temperature ranges, in contrast to
Postmus and King's experiments. In all instances in table A-6 where four tempera-
ture measurements are available, application of Blandamer's method (equation 4) re-
vealed temperature-dependent enthalpies (tables A-6 and A-7). Postmus and King'
also noted that the acid dissociation constant of Cr(H 20) 6

3+ had a temperature-
dependent AHO. though much smaller than that for the formation constant of

" Cr(H 20) 5NCS 2+ .

These results also caution against extrapolating rate or equilibrium data
beyond the measured temperature range. Assume, for example, that one used only
the three formation constants from the ratio of rate constants to compute AH° by
the following:

K = e ( - AHO/RT + AS°/R) (5)

Table 8 shows the fit obtained with the least-squares program. One would con-
clude that the fit is adequate over this temperature range, but it would be a mis-
take to extrapolate to 94.6 0 C with this value of AH° .

4. CONCLUSIONS

' a. The heat capacity for the formation constant of Cr(H20) 5NCS 2 - is
. constant with temperature. This suggests that the heat capacity is not spurious,

in the sense of arising from establishment of rapid preequilibria.

*See appendix A for tables.
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b. The formation constants of many inorganic equilibria should also have
temperature-dependent enthalpies. Failure to see such temperature dependences
may rest on the narrow temperature range over which most measurements have been
made in comparison to Postmus and King's measurement with Cr(H20)sNCS 2+.
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APPENDIX A

COLLECTED TABLES

ia
Table A-1. Formation Constants for Cr(H 0) NCS

K T
M- I x 10- 3 0C

1.24 94.6

1.15 84.8

1.06 73.7

1.04 63.6

1.03 46.2

1.10 30.0

1.12b  30.0

1.2 3b 25.1

1. 3 8 b 14.0

a Taken from reference 21. Formation constants corrected
to zero ionic strength.

b Ratio of forward and reverse rate constants (reference 22).

15



Table A-2. Temperature Fit of Formation Constant at 94.60 C

T K, experimental K, calculated*
C M 1x 10- 3  M 1x 10 3

84.8 1.15 1.14

73.7 1.06 1.06

63.6 1.04 1.03

46.2 1.03 1.03

30.0 1.10 1.13

30.0 1.12 1.13

25.1 1.23 1.19

14.0 1.38 1.38

= 2,535 + 150 cal/mole: ACp = 64.7 + 4; error expressed as standard
p

deviation of the mean.

Appendix A
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Table A-3. Summary of Enthalpies and Heat Capacitie"
for Formation Constant of Cr(H 2 0) 5 NcS

T AHo ACO

oc cal/mole cal/mole-K

94.6 2,535 _ 150* 64.7 + .4*

84.8 1,991 _ 169 66.6 ± 5

73.7 1,201 ± 182 66.2 ± 7

63.6 548 ± 132 62.6 + 6

46.2 -580 ± 57 65.7 ± 4

30.0 -1,765 ± 183 76.6 ± 8

30.0 -1,693 ± 126 69.9 + 8

25.1 -1,998 ± 275 61.1 - 12

14.0 -2,668 ± 135 65.1 5

*Error expressed as standard deviation of the mean.

I

Appendix A
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Table A-4. Linear Fit of Enthalpy versus Temperature

T AHO AHo calculated*

:" cal/mole cal/mole

94.6 2,535 2,579

84.8 1,991 1,934

73.7 1,201 1,203

63.6 548 9,538

46.2 -580 -608

30.0 -1,765 -1,675

30.0 -1,693 -1,675

25.1 -1,998 -1,998

14.0 -2,668 -2,728

*AHO -3,650 t 36 cal/mole; A)= 65.9 + 0.6 cal/mole-K

Appendix A
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Table A-5. Temperature Range for Measuring Some Inorganic Equilibria

Reaction No. of Measurements Range Reference

2+ OC
Fe + NCS FeNCS 3 11.4 to 28.5 24

3+ 2+ + 3 18 to 32 25
Fe,~ FeOH + H

2FeOH2+ (FeOH)4 +  3 18 to 32 25

3+ 2+

C o CoOH + H+ 4 12.5 to 28.2 26

Ce4+ CeOH + H+  4 5 to 35 27

2CeOH3+ [Ce-O-Ce] 6 + + H20 4 5 to 35 27

i2

Appendix A
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Table A-6. Enthalpy and Heat Capacity
for Cobaltic Ion Dissociation
Using Equation (4)

T AHO Co
p

0Ckcal/mole kcai/moie-

12.5 10.3 -2.0

18.4 10.1 -2.0

23.6 2.0 -2.0

28.2 1.5 -0.7

3+O 2++H+

Appendix A
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Table A-7. Enthalpy and Heat Capacities by Equation (4)

for Ceric Ion Dissociation a and Dimerization b

AHoa ACa a AHO b ACob
Temperature p p

-C kcal/mole kcal/mole-K kcal/mole-K k-al/mole - K

5 11.8 0.30 42.4 -2.9

15 13.6 0.39 -10.8 -1.1

25 17.4 0.39 -19.5 -0.7

35 21.3 0.38 -31.3 -0.8

a Ce4+ + H20 K CeOH3+ + H+

b 2CeOH . (CeOCe) + H20

Appendix A
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Table A-8. Temperature Fit of Formation Constant Using Kinetic Data

Temperature K, experimental K, fit*

"C M" x I0 "  M- x i0 "

30.0 1.10 1.12

25.1 1.23 1.20

14.0 1.38 1.39

*H= -2.3 + 0.5 kcal/mole; AS = 6.5 ± 1.7 cal/mole-K.

Appendix A
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APPENDIX B

TEMPERATURE FIT OF FORMATION CONSTANT
AT VARIOUS TEMPERATURES

Table B-I. Temperature F', of Formation Constant at 84.80C

Temperature K, experimental K, calculated*

0C x 0-  M -1 x 10-

94.6 1.24 1.25

73.7 1.06 1.07

63.6 1.04 1.03

46.2 1.03 1.03

30.0 1.10 1.13

30.0 1.12 1.13

25.1 1.23 1.19

14.0 [.38 1.36

*AHO = 1,991 _ 169 cal/mole; AC = 66.6 + 5 cal/mole-K.
p

4 23



Table B-2. Temperature Fit of Formation Constant at 73.70C

Temperature K, experimental K, calculated*
C x 10-  -1 x 10- 1

94.6 1.24 1.24

84.8 1.15 1.14

63.6 1.04 1.02

46.2 1.03 1.02

30.0 1.10 1.13

30.0 1.12 1.13

25.1 1.23 1.19

14.0 1.38 1.39

*AHO = 1201 + 182 cal/mole; AC = 66.2 + 7 cal/mole-K.

Appendix B
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Table B-3. Temperature Fit of Formation Constant at 63.6C

Temperature K, experimental K. calculdtCed*

M- 1 x 1-M-1 x l0-

94.6 1.24 1.25

84.8 1.15 1.16

73.7 1.06 1.08

46.2 1.03 1.04

30.0 1.10 1.14

30.0 1.12 1.14

25.1 1.23 1.19

14.0 1.38 1.38

*AHO = 548 + 132 cal/mole; AC0  62.6 + 6 cal/mole-K.
p

Appen~dix B
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Table B-4. Temperature Fit of Formation Constant at 46.2 0 C

Temperature K, experimental K, calculated
OcM1X 01 M- x10

94.6 1.24 1.25

84.8 1.15 1.15

73.7 1.06 1.07

63.6 1.04 1.03

30.0 1.10 1.13

30.0 1.12 1.13

25.1 1.23 1.19

14.0 1.38 1.38

0*AHO = -580 +57 calf/mole; A C =65.7 + cal/mole-K.
p
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Table B-5. Temperature Fit of Formation Constant at 30-00 C

Temperature fK, experimental K. calculated

M- x lo- x 10-1

94.6 1.24 1.29 a 1.27 1)

84.8 1.15 1.16 1.15

73.7 1.06 1.06 1.07

63.6 1.04 1.01 1.02

46.2 1.03 1.00 1.02

25.1 1.23 1.16 1.18

14.0 1.38 1.37 1.38

t,11 -1,765 + 183 Callmole;, A~C 0  76.6 + 8 cal/mole-K

(K = 1.10 xl X M 10Nf)

300O

*b AH = 1,693 + 126 cal/mole; AC0  69.9 + 6 cal/mole-K
p-

(K 0 oc 1.12 x lo03 M)
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Table B-6. Temperature Fit of Formation Constant at 25.10C

Temperature K, experimental K, calculated*

0C M-  x 10-  M- I x io -

94.6 1.24 1.22

84.8 1.15 1.14

73.7 1.06 1.07

* 63.6 1.04 1.04

46.2 1.03 1.06

30.0 1.10 1.17

30.0 1.12 1.17

" 14.0 1.38 1.43

*AHO = -1998 + 275 cal/mole; ACO = 61.1 + 12 cal/mole-K.
p -
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Table B-7. Temperature Fit of Formation Constant at 14.0oC

Temperature K, experimental K, calculated*
°C M- 1 x 10 - 1 M- I x 1o

94.6 1.24 1.25

84.8 1.15 1.15

73.7 1.06 1.07

63.6 1.04 1.03

46.2 1.03 1.03

30.0 1.10 1.13

30.0 1.12 1.13

25.1 1.23 1.19

*AHO = -2668 + 135 cal/mole; AC ° = 65.1 + 5 cal/mole-K.
-- p -

4

Appendix B

29
i,



Bln

30



I [-7

DISTRIBUTION LIST 2

Names Copies Names Copies

CHEMICAL SYSTEMS LABORATORY
Federal Emergency Management Agency

. ATTN: DRDAR-CLB I Office of Research/NPP

* ATTN: DRDAR-CLB-C 1 ATTN: David W. Bensen
. ATTN: DRDAR-CLB-PO 1 Washington, DC 20472

* ATTN: DRDAR-CLB-R

ATTN: DRDAR-CLB-R(M) 1 HQ DA

: ATTN: DRDAR-CLB-R(S) 1 Office of the Deputy Chief of Staff for
ATTN: DRDAR-CLB-T Research, Development & Acquisition

ATTN: DRDAR-CLC-B 1 ATTN: DAMA-CSS-C

ATTN: DRDAR-CLC-C 1 Washington, DC 20310

ATTN: DRDAR-CLC-E I

ATTN: DRDAR-CLF I HQ Sixth US Army

ATTN: DRDAR-CLJ-R 1 ATTN: AFKC-OP-NBC

ATTN: DRDAR-CLJ-L 2 Presidio of San Francisco, CA 94129

ATTN: DRDAR-CLJ-M 1

ATTN: DRDAR-CLN 1 Commander

ATTN: DRDAR-CLT I DARCOM, STITEUR

ATTN: DRDAR-CLW-C 1 ATTN: DRXST-STI

ATTN: DRDAR-CLW-P I Box 48, APO New York 09710

ATTN: DRDAR-CLY-A I

ATTN: DRDAR-CLY-R 4 Commander

USASTCFEO

COPIES FOR AUTHOR(S) ATTN: MAJ Mikeworth

Research Division 6 APO San Francisco 96328

RECORD COPY: DRDAR-CLB-A

Commander

DEPARTMENT OF DEFENSE US Army Nuclear & Chemical Agency

ATTN: MONA-WE

Defense Technical Information Center 7500 Backlick Rd, Bldg 2073

ATTN: DTIC-DDA-2 12 Springfield, VA 22150

Cameron Station, Building 5

Alexandria, VA 22314 Army Research Office
ATTN: DRXRO-CB (Dr. R. Ghlrardelll)

Director P.O. Box 12211

Defense Intelligence Agency Research Triangle Park, NC 27709
ATTN: DB-4G1

Washington, DC 20301 OFFICE OF THE SURGEON GENERAL

Commander Commander

USASED, USAINSCOM US Army Medical Bloengineering Research

ATTN: IAFM-SED-II 1 and Development Laboratory

Fort Meade, MD 20755 ATTN: SGRD-UBD-AL, Bldg 568

Fort Detrick, Frederick, MD 21701

DEPARTMENT OF THE ARMY
Commander

HQDA USA Medical Research Institute of
ATTN: DAMO-NCC 1 Chemical Defense

ATTN: DAMO-NC/COL Robinson (P) 1 ATTN: SGRD-UV-L

WASH DC 20310 Aberdeen Proving Ground, MD 21010

31



I US ARMY ARMAMENT RESEARCH AND

US ARMY MATERIEL DEVELOPMENT AND DEVELOPMENT COMMAND

READINESS COMMAND

Commander
Commander US Army Armament Research and

US Army Materiel Development and Development Command

Readiness Command ATTN: DRDAR-LCA-L

ATTN: DRCLDC I ATTN: DRDAR-LCE-C 1

-. ATTN: DRCSF-P 1 ATTN: DRDAR-LCU-CE 1

5001 Eisenhower Ave ATTN: DRDAR-NC (COL Lymn) 3

Alexandria, VA 22333 ATTN: DRDAR-SCA-T I

ATTN: DRDAR-SCM 1

Project Manager Smoke/Obscurants ATTN: DRDAR-SCP I
ATTN: DRCPM-SMK-S 3 ATTN: DRDAR-SCS 1
Aberdeen Proving Ground, MD 21005 ATTN: DRDAR-TDC (Dr. D. Gyorog) I

ATTN: DRDAR-TSS 2

- Commander ATTN: DRCPM-CAWS-AM I

US Army Foreign Science & Technology Center Dover, NJ 07801

- ATTN: DRXST-MT3 I

220 Seventh St., NE US Army Armament Research and
Charlottesville, VA 22901 Development Command

Resident Operations Office

Director ATTN: DRDAR-TSE-OA (Robert Thresher)

US Army Materiel Systems Analysis Activity National Space Technology Laboratories

ATTN: DRXSY-MP 1 NSTL Station, Mississippi 39529

ATTN: DRXSY-CA (Mr. Metz) 1

Aberdeen Proving Ground, MD 21005 Commander

ARRADCOM

" Commander ATTN: DRDAR-QAC-E 1

US Army Missile Command Aberdeen Proving Ground, MD 21010

Redstone Scientific Information Center

" ATTN: DRSMI-RPR (Documents) Commander

Redstone Arsenal, AL 35809 USA Technical Detachment 1

US Naval EOD Technology Center

Director Indian Head, MD 20640

DARCOM Field Safety Activity
ATTN: DRXOS-C I US ARMY ARMAMENT MATERIEL READINESS

• Charlestown, IN 47111 COMMAND

Commander Commander
US Army Natick Research and Development US Army Armament Materiel Readiness Command

Laboratories ATTN: DRSAR-ASN 1

ATTN: DRDNA-O 1 ATTN: DRSAR-IRW 1
* ATTN: DRDNA-IC 1 Rock Island, IL 61299

ATTN: DRDNA-IM I

ATTN: DRDNA-ITF (Dr. Roy W. Roth) 2 Commander

• Natick, MA 01760 US Army Dugway Proving Ground

ATTN: Technical Library (Docu Sect) I

Dugway, UT 84022

32



US ARMY TRAINING & DOCTRINE COMMAND US ARMY TEST & EVALUATION COMMAND

Commandant Commander

US Army Infantry School US Army Test & Evaluation Command

ATTN: CTDD, CSD, NBC Branch ATTN: DRSTE-CT-T

Fort Benning, GA 31905 Aberdeen Proving Ground, MD 21005

Commandant DEPARTMENT OF THE NAVY
US Army Missile & Munitions Center

and School Chief of Naval Research

ATTN: ATSK-CM 1 ATTN: Code 441

ATTN: ATSK-TME 1 800 N. Quincy Street

Redstone Arsenal, AL 35809 Arlington, VA 22217

- Commander Project Manager
- US Army Logistics Center Theatre Nuclear Warfare Project Office

ATTN: ATCL-MG I ATTN: TN-09C

Fort Lee, VA 23801 Navy Department

Washington, DC 20360

Commandant

US Army Chemical School Commander

ATTN: ATZN-CM-C I Naval Explosive Ordnance Disposal

* ATTN: ATZN-CM-AD 2 Technology Center

ATTN: ATZN-CM-TPC 2 ATTN: AC-3

Fort McClellan, AL 36205 Indian Head, MD 20640

Commander Commander
USAAVNC Naval Surface Weapons Center

ATTN: ATZQ-D-MS Code G51

Fort Rucker, AL 36362 Dahigren, VA 22448

. Commander Chief, Bureau of Medicine & Surgery

US Army Infantry Center Department of the Navy

ATTN: ATSH-CD-MS-C I ATTN: MED 3C33

Fort Benning, GA 31905 Washington, DC 20372

Commander Commander
USA Training and Doctrine Command Naval Air Development Center

* ATTN: ATCD-N 1 ATTN: Code 2012 (Dr. Robert Heimbold)

Fort Monroe, VA 23651 Warminster, PA 18974

Commander US MARINE CORPS

US Army Armor Center
ATTN: ATZK-CD-MS 1 Commandant

ATTN: ATZK-PPT-PO-C I HQ, US Marine Corps

" Fort Knox, KY 40121 ATTN: Code LMW-50

Cm d Washington, DC 20380
Commander

USA Combined Arms Center and Commanding General
Fort Leavenworth Marine Corps Development and

ATTN: ATZL-CAM-IM 1 Education Command

Fort Leavenworth, KS 66027 ATTN: Fire Power Division, D091

Quantlco, VA 22134

$ 33



DEPARTMENT OF THE AIR FORCE AMD/RDSX

Brooks AFB, TX 78235

ASD/AESD 1

* Wright-Patterson AFB, OH 45433 AD/XRO

Eglln AFB, FL 32542
HQ AFSC/SDZ 1

. ATTN: CPT D. Rledlger OUTSIDE AGENCIES
* Andrews AFB, MD 20334

Battelle, Columbus Laboratories

HQ, AFSC/SDNE I ATTN: TACTEC

* Andrews AFB, MO 20334 505 King Avenue

Columbus, OH 43201

HQ, AFSC/SGB 1
Andrews AFB, DC 20334 Toxicology Information Center, JH 652

National Research Council

HQ, NORAD 2101 Constitution Ave., NW

ATTN: J-3TU 1 Washington, DC 20418

Peterson AFB, CO 80914
US Public Health Service

AFAMRL/HE Center for Disease Control

* ATTN: Dr. Clyde Reploggle 1 ATTN: Lewis Webb, Jr.

Wright-Patterson AFB, OH 45433 Building 4, Room 232

HAtlanta, GA 30333
HQ AFTEC/TEL1

Kirtland AFB, NM 87117 Director

Central Intelligence Agency

USAF TAWC/THL 1 ATTN: AMR/ORD/DD/S&T

Eglin AFB, FL 32542 Washington, DC 20505

AFATL/OLV ADDITIONAL ADDRESSEE

Eglin AFB, FL 32542

Commandant

USAF SC Academy of Health Sciences, US Army

* ATTN: AD/YQ 1 ATTN: HSHA-CDH 1

ATTN: AD/YQO (MAJ Owens) I ATTN: HSHA-IPM 2

Eglin AFB, FL 32542 Fort Sam Houston, TX 78234

- USAFSAM/VN
Deputy for Chemical Defense

. ATTN: Dr. F. Wesley Baumgardner 1

Brooks AFB, TX 78235

AFAMRL/TS
. ATTN: COL Johnson 1

", Wright-Patterson AFB, OH 45433

AMD/RDTK

ATTN: LTC T. Klngery

Brooks AFB, TX 78235

AMD/RDSM 1
Brooks AFB, TX 78235

3

~34



4Vi

OW,,

j~ Olt

-YA
1.


